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Abstract. The negative-dimensional integration method (NDIM) is revealing itself as a very useful tech-
nique for computing massless and/or massive Feynman integrals, covariant and noncovariant alike. Up
until now, however, the illustrative calculations done using such method have been mostly covariant scalar
integrals, without numerator factors. We show here how those integrals with tensorial structures also can
be handled straightforwardly and easily. However, contrary to the absence of significant features in the
usual approach, here the NDIM also allows us to come across surprising unsuspected bonuses. Toward this
end, we present two alternative ways of working out the integrals and illustrate them by taking the easiest
Feynman integrals in this category that emerge in the computation of a standard one-loop self-energy
diagram. One of the novel and heretofore unsuspected bonuses is that there are degeneracies in the way
one can express the final result for the referred Feynman integral.

1 Introduction

In an effort to make sense of diverging integrals that have
emerged in the field- theoretical approach to transition
amplitudes, scattering matrices, and so forth, physicists
introduced and developed the concept of extended dimen-
sions[1]. This can be interpreted in a pragmatic way as a
mere artifact of getting around a difficult problem. Nonethe-
less, the principle of analytic continuation behind it is
mathematically well-founded, being self-consistent and
well-defined. Thus, if we say that the beauty and the
power of mathematics reside in the possibility of defining
abstract entities that have no real connection to our phys-
ical world, and that from such entities, we can draw per-
tinent and meaningful properties that become relevant to
our dimensionality, then the effort to go to these frontiers
is worthwhile and enriching. We think of the negative-
dimensional integration method (NDIM) in such terms.

We work with negative dimensions and with precise
analytic continuations, so that interesting results emerge
from our exploration. A very useful technique stemming
from this excursion is the method of integrating Feynman
integrals in negative dimensions [2]. Instead of having the
usual field propagators in the denominator of the inte-
grands, we have them here as numerators. In other words,
what we have here are, in essence, integrands of polyno-
mial type. Of course, once the integral is performed in neg-
ative dimensions, it must be analytically continued back
to our real, positive-dimensional world. The basis for do-
ing this is set forth in our previous papers [3–5].

Our aim in this work is to further illustrate the
methodology of the NDIM, and for this purpose we take
examples from the one-loop vacuum-polarization tensor

diagram, which generates some Feynman integrals with
tensorial structures. We show that the calculation of inte-
grals with tensorial structures can be dealt with properly
using the NDIM technology. Moreover, we show that this
can be approached in at least two ways, which we con-
sider with details in the next sections. A first approach is
to just “copy” the steps used in the traditional positive-
dimensional approach, i.e., using derivative identities in
the integrands. A second, novel approach is to define right
from the beginning the relevant negative-dimensional in-
tegral corresponding to the Feynman integral we want to
evaluate and proceed from there. Just to make the illustra-
tions simpler and clearer, we restrict ourselves to massless
fields, but the generalization to massive ones is not diffi-
cult to do.

2 Using differential identities

Let us first consider the following (vectorial) Feynman in-
tegral:

Iµ =
∫

d2ωq
qµ

q2 (q − p)2
, (1)

which clearly emerges in the calculation of a vacuum-
polarization tensor of, e.g., quantum electrodynamics.
This, of course, is easily calculated in the standard proce-
dure of positive dimensions. The next question we address
is: How is this done in the NDIM context?

The structure of the above integral immediately sug-
gests that a possible way of starting off NDIM calculation
is to consider a Gaussian-like integral of the type

Gµ =
∫

d2Dq qµ e−αq2−β(q−p)2 . (2)
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This, in terms of the negative-dimensional integral
Iµ(i, j, D; p) is therefore given by

Gµ =
∞∑

i,j=0

(−1)i+j αi βj

i! j!

∫
d2Dq qµ (q2)i [(q − p)2]j

=
∞∑

i,j=0

(−1)i+j αi βj

i! j!
Iµ(i, j, D; p) . (3)

On the other hand, performing the momentum inte-
gration of equation (2) through the use of the following
identity,

qµ e2βq·p =
1
2β

∂

∂pµ
e2βq·p , (4)

we get

Gµ =
β

λ
pµ

(π

λ

)D

exp
(

−α β

λ
p2

)

= pµπD
∞∑

x,a,b=0

(−1)x (−x − D − 1)!
αx+a βx+b+1

a! b!

× (p2)x

x!
δa+b,x+D+1 , (5)

where λ = α + β.
Comparison of equations (3) and (5), term by term,

yields the result for Iµ(i, j, D; p). After an analytic con-
tinuation to positive dimensions and negative values of
exponents (i, j) [4], we get

Iµ = Iµ
AC

= πD pµ (p2)σ (−i|σ) (−j|σ + 1)
(−σ|2σ + D + 1)

. (6)

where we have used σ = i + j + D and the definition for
Pocchhammer’s symbols

(−i|σ) ≡ (−i)σ =
Γ (−i + σ)

Γ (σ)
. (7)

Next, we consider the tensorial Feynman integral

Iµν =
∫

d2ωq
qµ qν

q2 (q − p)2
. (8)

The procedure is completely analogous, now starting from

Gµν =
∫

d2Dq qµ qν e−αq2−β(q−p)2 . (9)

Here we quote only the final result, which reads

Iµν = Iµν
AC

= πD (p2)σ

{
pµ pν (−i|σ) (−j|σ + 2)

(−σ|2σ + D + 2)

−gµν p2

2
(−i|σ + 1) (−j|σ + 1)
(−σ − 1|2σ + D + 3)

}
. (10)

In a similar manner, we can evaluate the following inte-
grals very easily:

Iµνρ = Iµνρ
AC

= πD (p2)σ

{
p2 Tµνρ

2
(−i|σ + 1) (−j|σ + 2)
(−σ − 1|2σ + D + 4)

+pµ pν pρ (−i|σ) (−j|σ + 3)
(−σ|2σ + D + 3)

}
, (11)

where Tµνρ = pµ gνρ + pν gµρ + pρ gµν , and

Iµνρς = Iµνρς
AC

= πD (p2)σ

{
p4 Aµνρς

4
ΓA

+
p2 Bµνρς

2
ΓB + pµpνpρpς ΓP

}
, (12)

where

ΓA ≡ (−i|σ + 2) (−j|σ + 2)
(−σ − 2|2σ + D + 6)

ΓB ≡ (−i|σ + 1) (−j|σ + 3)
(−σ − 1|2σ + D + 5)

ΓP ≡ (−i|σ) (−j|σ + 4)
(−σ|2σ + D + 4)

(13)

with Aµνρς = gµν gρς + gµρ gνς + gµς gνρ and Bµνρς =
pµpνgρς +permutations. All these results agree with those
given in Appendix A of [6].

3 Using pure NDIM technique

In order to calculate tensorial structures in Feynman inte-
grals, we can adopt another alternative approach. Let us
consider the following integral:

J =
∫

d2Dq
(2q · p)l

q2 (q − p)2
, l ≥ 0 (14)

Of course, for l > 0, the tensorial structure is implicit,
being contracted with external vector p. The advantage
of this approach is that it takes care of all the tensorial
structures at the same time.

So, instead of using, e.g., (2) or (9) as our starting
point, we see from the structures of the Feynman inte-
grals in (1) and (8) another possible way of defining the
Gaussian-like integral of interest to begin with, namely,

H =
∫

d2Dq e−αq2−β(q−p)2−γ(2q·p) . (15)

This defines the negative-dimensional integral
J (i, j, l, D; p) as follows:

H =
∞∑

i,j,l=0

(−1)i+j+l αi βj γl

i! j! l!

×
∫

d2Dq (q2)i [(q − p)2]j (2q · p)l

=
∞∑

i,j,l=0

(−1)i+j+l αi βj γl

i! j! l!
J (i, j, l, D; p) . (16)
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On the other hand, from (15) we get also

H = πD
∞∑

x,...,b=0
a+b=−σ′−D

(−1)x+y 2y (−σ′ − D)! (p2)σ′

a! b!x! y! z!

×αx+aβx+y+bγy+2z (17)

where σ′ ≡ x + y + z = i + j + l + D, or σ′ = σ + l.
Therefore, the solution for J (i, j, l, D; p) is obtained from
the solution of a system of linear algebraic equations of
the following form [4]:



i = x + a

j = x + y + b

l = y + 2z

σ′ = x + y + z

(18)

It is very easy to see that the above system is formed
by four equations but five unknowns (the sum indices
x, y, z, a, b). Therefore, it can be solved only in terms of
one of the sum indices x, y, z, a, or b. For each of these re-
maining indices, the sum yields 3F2 hypergeometric func-
tions of unit argument, as follows:

J AC
{S} = Λ{S} 3F2(a, b, c ; e, f | 1 ) (19)

where the set {S} = {x, yeven, yodd, z, a, b}1, with

Λx = πD (2p2)l (−4p2)i+j+D

× (−j| 2i + 2j + l + 2D)
(i + j + D| l + D) (1 + l| 2i + 2j + 2D)

, (20)

Λeven
y = πD (p2)σ′

(21)

× (−i| 2i + 1
2 l + D) (−j| 2j + 1

2 l + D)
(−i − j − 1

2 l − D| 2i + 2j + 3
2 l + 3D) (1 + l| − 1

2 l)
,

Λodd
y = −2Λeven

y

× (i + 1
2 l + D| 1

2 ) (−i − j − 1
2 l − D| 1

2 ) (− 1
2 l| 1

2 )
(1 − j − 1

2 l − D| 1
2 )

, (22)

Λz = πD (2p2)l (p2)i+j+D

× (−i| 2i + l + D) (−j| 2j + D)
(−i − j − D| 2i + 2j + l + 3D)

, (23)

Λa = πD (2p2)l (p2)i+j+D (−4)j+D

× (−j| 2j + D)
(1 + l| 2j + 2D)

, (24)

Λb =
πD (p2)σ′

(−1)l

22i+l+2D

× (−i| − i − j − l − 2D) (−j| 2i + j + l + 2D)
(1 + l| i + D)

, (25)

1 Note that the y index has been split into its even and odd
sectors.

and the corresponding parameters of hypergeometric func-
tions given by:

Para-
meters 3F x

2 3F y,even
2 3F y,odd

2
a −i i + 1

2 l + D i + 1
2 l + D + 1

2
b −i − j − 1

2 l − D −i − j − 1
2 l − D −i − j − 1

2 l − D + 1
2

c −i − j − 1
2 l − D + 1

2 − 1
2 l − 1

2 l + 1
2

e 1 − i − j − D 1 − j − 1
2 l − D 1 − j − 1

2 l − D + 1
2

f 1 − 2i − j − l − 2D 1
2

3
2

Para-
meters 3F z

2 3F a
2 3F b

2

a j + D −i i + j + l + 2D

b − 1
2 l i + j + l + 2D i + 1

2 l + D

c − 1
2 l + 1

2 j + D i + 1
2 l + D + 1

2
e 1 + i + j + D j + 1

2 l + D + 1
2 1 + i + l + D

f 1 − i − l − D 1 + j + 1
2 l + D 1 + 2i + j + l + 2D

Observe that in the process of analytic continuation
to our physical world (D > 0), exponents i, j are analyt-
ically continued to allow for negative values, whereas the
exponent l must be left untouched, since, by definition,
l ≥ 0 in the original Feynman integral [7].

One of the interesting features of the NDIM technique
is that it can give rise to degenerate solutions for the
same Feynman integral. All the answers we have above, al-
though seemingly distinct, are in fact only different ways
of expressing the same thing. This means that for this
particular case, where the solutions are degenerate, taking
one of them will suffice. The equivalence of the different
forms in which the solutions are expressed is shown in the
appendix.

Given that we have this freedom of choice, we can
look at the hypergeometric functions whose parameters
are listed in the table and see that the most convenient so-
lution is given by the one coming from solving the system
in terms of the summation index z. The reason for this is
that two of its numerator parameters, namely b = −(1/2)l
and c = −(1/2)l + 1/2, readily leads to truncated series
for l = even and l = odd, respectively. Then

J = J AC
z

= πD (p2)σ′
2l (−i|2i + l + D) (−j|2j + D)

(−i − j − D|2i + 2j + l + 3D)

× 3F2

(
j + D, −1

2
l, −1

2
l +

1
2
;

1 − i − l − D, 1 + i + j + D

∣∣∣∣ 1
)

. (26)

Now it remains for us to check the results we obtained
so far by assigning explicit values for the exponents i, j,
and l in (6), (10), (11), (12), and (26). Let us begin with
i = j = −1 in (6), and in order to facilitate the compari-
son, we shall compute

2pµ Iµ(−1,−1, D; p) = 2πD (p2)D−1

×Γ (D) Γ (D − 1) Γ (2 − D)
Γ (2D − 1)

. (27)
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This result is to be compared with the one coming from
equation (26) for the particular case when i = j = −1,
and l = 1. It can be seen right away that the numerator
parameter −(1/2)l + 1/2 of the hypergeometric function
3F2 vanishes for the particular value l = 1, so that only
the first term in the series defining it is relevant, and

J(−1,−1, 1, D; p) = 2πD (p2)D−1

× (1|D − 1) (1|D − 2)
(2 − D|3D − 3)

, (28)

which is, of course, exactly equal to (27), as it should be.
From (10) we get (after contracting it with 4 pµ pν):

4pµ pν Iµν(−1,−1, D; p) = 4πD (p2)D

×
{

1 − 1
2D

}
Γ (D + 1) Γ (D − 1) Γ (2 − D)

Γ (2D)
. (29)

This is now to be compared to the result coming from
(26), for the particular case when i = j = −1, and l = 2.

J(−1,−1, 2, D; p) = 4πD (p2)D (1|D) (1|D − 2)
(2 − D|3D − 2)

×2F1

(
−1, −1

2
; −D

∣∣∣∣ 1
)

= 4πD (p2)D (1|D) (1|D − 2)
(2 − D|3D − 2)

×
{

1 − 1
2D

}
. (30)

Note that the a and f parameters coalesce into the same
value D−1, so that the 3F2 becomes a 2F1 hypergeometric
function. Moreover, the numerator parameter b = −(1/2)l
turns out to be a negative-integer unity for l = 2, so that
the series is truncated at the second term, and the final
result is exactly equal to the right-hand side (RHS) of
(29).

In a completely analogous way, we get from (11), con-
tracted with 8 pµpνpρ,

8pµpνpρI
µνρ(−1,−1, D, p) = 8πD(p2)D+1

×Γ (D − 1)Γ (D + 2)Γ (2 − D)
Γ (2D + 1)

{
1 − 3

2(D + 1)

}
(31)

while from (26) with i = j = −1 and l = 3, we get

J(−1,−1, 3, D, p) = 8πD(p2)D+1

× (1|D + 1)(1|D − 2)
(2 − D|3D − 1) 2F1

(
−3

2
, −1; −D − 1

∣∣∣∣ 1
)

= 8πD(p2)D+1 Γ (D − 1)Γ (D + 2)Γ (2 − D)
Γ (2D + 1)

×
{

1 − 3
2(D + 1)

}
, (32)

which is exactly the same as (31) above.

Finally, from (12), contracted with 16pµpνpρpς , we get

16pµpνpρpςI
µνρς(−1,−1, D, p)

= 16πD(p2)D+2 Γ (D − 1)Γ (D + 3)Γ (2 − D)
Γ (2D + 2)

×
{

1 − 3
D + 2

+
3

4(D + 1)(D + 2)

}
, (33)

while from (26), with i = j = −1 and l = 4, we get

J(−1,−1, 4, D, p) = 16πD(p2)D+2 (1|D + 2)(1|D − 2)
(2 − D|3D) 2

×F1

(
−2, −3

2
; −2 − D

∣∣∣∣ 1
)

= 16πD(p2)D+2 (1|D + 2)(1|D − 2)
(2 − D|3D)

×
{

1 − 3
D + 2

+
3

4(D + 1)(D + 2)

}
, (34)

in complete agreement with (33) above.

4 Conclusion

We have shown in this paper how we can work out Feyn-
man integrals with tensorial structures in the context of
the NDIM. There are two equivalent approaches for doing
this: the first is to use differential identities to work them
out one by one (vector, rank-two tensor, and so on), mir-
roring the positive- dimensional technique; the second, to
use pure NDIM methodology to get simultaneous results.
The former technique does not bring any new feature,
while the latter one yields this new feature of degenerate
solutions, plus the bonus of having them all at once. As
we have noticed before [4], the pure NDIM methodology
proves more powerful in that it gives several equivalent
forms of a six-fold degenerate solution for the integral. In
addition, the solutions we get are simultaneously obtained.

Acknowledgements. AGMS gratefully acknowledges FAPESP
(Fundação de Amparo à Pesquisa do Estado de São Paulo,
Brasil) for financial support.

Appendix

In this appendix, we shall show in detail the equivalence
of the six solutions generated by the pure NDIM tech-
nology in the computation of the one-loop Feynman inte-
grals with tensorial structures in the numerator. In order
to do this, let us first consider the solution JAC

z . Its cor-
responding 3F

z
2 hypergeometric function has parameters

given in the table of Sect. 3. It is clear from its parameter,
bz = −(1/2)l, that for l = even = 2m, m = 0, 1, 2, ...,
the hypergeometric function is actually a truncated se-
ries. In a similar way, from its parameter cz = − 1

2 l + 1
2

for l = odd = 2m + 1, m = 0, 1, 2, ... the hypergeometric
function is also a truncated series.
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Truncated hypergeometric series of the form pFq, p =
q + 1 can be inverted [8,9] from, say, χ into χ−1. For the
particular case of 3F2 with a unit argument, such inversion
leads to an identity between them. This is expressed in a
shorthand notation as

Γ (e − c)Γ (f − c)Fp(0; 4, 5) = (−)mΓ (1 − a)Γ (1 − b)
×Fn(3; 1, 2) (35)

where

Fp(0; 4, 5) = 3F2(a, b, c ; e, f | 1)
Γ (s)Γ (e)Γ (f)

, (36)

and

Fn(3; 1, 2) (37)

= 3F2(1 + c − e, 1 + c − f, c ; 1 − a + c, 1 − b + c | 1)
Γ (s)Γ (1 − a + c)Γ (1 − b + c)

with m denoting the negative-integer numerator parame-
ter, and s = e + f − a − b − c.

Another way of writing this up is (for general variable
χ):

3F2(−m, α1, α2 ; c, ρ1|χ)
= Θm 3F2(−m, β1, β2 ; ϕ1, ϕ2 |χ−1), (38)

where

β1 = 1 − m − c

β2 = 1 − m − ρ1

ϕ1 = 1 − m − α1

ϕ2 = 1 − m − α2

Θm =
(α1|m) (α2|m) (−χ)m

(c|m) (ρ1|m)
(39)

Let us first separate the even/odd sectors of Jz
AC as

follows: For l = even = 2m , m = 0, 1, 2, ..., we define

3F
even
2 = 3F2

(
−m, −m +

1
2
, j + D ;

1 + i + j + D, 1 − i − 2m − D

∣∣∣∣ 1
)

, (40)

and for l = odd = 2m + 1 , m = 0, 1, 2, ... we define

3F
odd
2 = 3F2

(
−m, −m − 1

2
, j + D ;

1 + i + j + D, −i − 2m − D

∣∣∣∣ 1
)

. (41)

Using equation (38) in equation (40), we get

3F
even
2 = Υ 3F2

(
−1

2
l, −i − j − 1

2
l − D, i +

1
2
l + D ;

1 − j − 1
2
l − D,

1
2

∣∣∣∣ 1
)

(42)

where

Υ ≡ (−1)
1
2 l (− 1

2 l + 1
2 | 12 l) (j + D| 12 l)

(1 + i + j + D| 12 l) (1 − i − l − D|12 l)
(43)

=
(j + D| 12 l) (−i − j − D| − 1

2 l) (i + l + D| − 1
2 l)

( 1
2 l + 1

2 | − 1
2 l)

.

Plugging this into the expression of Jz, we get

Jz
AC = 2l πD (p2)σ′ ×

Γ (j + 1
2 l +D)Γ (−i − j − 1

2 l −D)Γ (i + 1
2 l +D)Γ ( 1

2 l + 1
2 )

Γ (−i)Γ (−j)Γ (i + j + l +D)Γ (1
2 )

×3F2

(
−1

2
l, −i − j − 1

2
l − D, i +

1
2
l + D ;

1 − j − 1
2
l − D,

1
2

∣∣∣∣ 1
)

. (44)

Using the duplication formula for the gamma function

Γ

(
1
2
l +

1
2

)
=

Γ ( 1
2 )Γ (1 + l)

2l Γ (1 + 1
2 l)

(45)

and rearranging the gamma funtions in convenient
Pochhammer symbols, we arrive at the expression for
Jy,even

AC , i.e., Jz
AC = Jy,even

AC . In a completely analogous
way, starting from 3F

odd
2 we arrive at Jy,odd

AC .
Thus, when (38) is applied to our case in Jz

AC with
χ = 1, it leads us to the following conclusion: The l = even
sector of Jz

AC yields exactly the y = even sector, Jy,even
AC ,

whereas the l = odd sector of Jz
AC yields exactly the y =

odd sector, Jy,odd
AC . In order to arrive at these identities,

one needs to use the duplication formula for the gamma
function in the intermediate steps of the calculation.

Another identity between the 3F2 hypergeometric func-
tions of unity argument is given by [8,9]:

Fp(0; 4, 5) = Fp(0; 2, 3) (46)

where Fp(0; 4, 5) is defined in (36), and

Fp(0; 2, 3) = 3F2(e − a, f − a, s ; s + b, s + c | 1)
Γ (a) Γ (s + b) Γ (s + c)

(47)

Plugging in the parameters of the 3F
z
2 hypergeometric

function (see the table in Sect. 3) into (36), the identity
(46) above yields

3F
z
2 = M 3F2

(
1 + i, 1 − σ′ − D,

3
2

− D ;

3
2

− 1
2
l − D, 2 − 1

2
l − D

∣∣∣∣ 1
)

, (48)

where M is a factor given by ratios of gamma functions:

M ≡ Γ ( 3
2 − D) Γ (1 + i + j + D) Γ (1 − i − l − D)
Γ (j + D) Γ ( 3

2 − 1
2 l − D) Γ (2 − 1

2 l − D)
. (49)

If we now redefine the 3F2 hypergeometric function on
the RHS of (48) to be our new F new

p (0; 4, 5), and use the
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fact that for terminating series, the following identity is
valid [8,9],

Γ (s) Γ (e − c) Γ (f − c) F new
p (0; 4, 5) = Γ (1 − a)

×Γ (1 − f + b) Γ (1 − e + b) Fp(1; 0, 2), (50)

where

Fp(1; 0, 2) = (51)

3F2(1 − a, 1 − f + b, 1 − e + b ; 2 − s − a, 1 − a + b | 1)
Γ (c) Γ (2 − s − a) Γ (1 − a + b)

,

then we have

3F
z
2 = N 3F2

(
−i, −σ′ +

1
2
l,

1
2

+
1
2
l − σ′ ;

1 + l − σ′, 1 − i − σ′ − D

∣∣∣∣ 1
)

= N 3F
x
2 . (52)

We do not need to be overly concerned about the N
factor, since both M and N are ratios of gamma functions
that in the end can be rearranged conveniently to yield the
desired factor present in the Jx

AC solution. Therefore, after
some algebraic manipulation, we have Jz

AC = Jx
AC . In a

similar manner, if we interchange parameters a and b in
F new

p (0; 4, 5) and proceed as above, we get Jz
AC = Jb

AC .
Lastly, for terminating 3F2 hypergeometric series with

parameter c = −m, the following identity is verified [8,9]:

Fp(0; 4, 5) = Ω Fn(3; 4, 5), (53)

where

Ω ≡ (−1)m Γ (1 − a) Γ (1 − b)
Γ (e − c) Γ (f − c)

, (54)

and

Fn(3; 4, 5) = (55)

3F2(1 − a, 1 − b, s ; 1 − a − b + e, 1 − a − b + f | 1)
Γ (c) Γ (1 − a − c + e) Γ (1 − a − b + f)

.

Substituting the parameters of the hypergeometric
function 3F

z
2 in (53), we get

3F
z
2 = P 3F2

(
1 − j − D, 1 +

1
2
l,

3
2

− D ;

2 + i +
1
2
l, 2 − i − j − 1

2
l − 2D

∣∣∣∣ 1
)

, (56)

where P is a ratio of gamma functions with which we do
not concern ourselves with.

Redefining the RHS hypergeometric function in (56) as
our new F new

p (0; 4, 5), and using (50), we conclude that
3F

z
2 = Q 3F

a
2 , so that, at the end, Jz

AC = Ja
AC . This

concludes our proof of degeneracy in the solution for the
Feynman integral.
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